A Minicircuitry Comprised of MicroRNA-223 and Transcription Factors NFI-A and C/EBPα Regulates Human Granulopoiesis

نویسندگان

  • Francesco Fazi
  • Alessandro Rosa
  • Alessandro Fatica
  • Vania Gelmetti
  • Maria Laura De Marchis
  • Clara Nervi
  • Irene Bozzoni
چکیده

MicroRNAs play important roles in cell differentiation by acting as translational inhibitors of specific target genes. Here we show that human granulocytic differentiation is controlled by a regulatory circuitry involving miR-223 and two transcriptional factors, NFI-A and C/EBPalpha. The two factors compete for binding to the miR-223 promoter: NFI-A maintains miR-223 at low levels, whereas its replacement by C/EBPalpha, following retinoic acid (RA)-induced differentiation, upregulates miR-223 expression. The competition by C/EBPalpha and the granulocytic differentiation are favored by a negative-feedback loop in which miR-223 represses NFI-A translation. In line with this, both RNAi against NFI-A and ectopic expression of miR-223 in acute promyelocytic leukemia (APL) cells enhance differentiation, whereas miR-223 knockdown inhibits the differentiation response to RA. Altogether, our data indicate that miR-223 plays a crucial role during granulopoiesis and point to the NFI-A repression as an important molecular pathway mediating gene reprogramming in this cell lineage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polycombs and microRNA-223 regulate human granulopoiesis by transcriptional control of target gene expression.

Epigenetic modifications regulate developmental genes involved in stem cell identity and lineage choice. NFI-A is a posttranscriptional microRNA-223 (miR-223) target directing human hematopoietic progenitor lineage decision: NFI-A induction or silencing boosts erythropoiesis or granulopoiesis, respectively. Here we show that NFI-A promoter silencing, which allows granulopoiesis, is guaranteed b...

متن کامل

Transcription factor C/EBPα-induced microRNA-30c inactivates Notch1 during granulopoiesis and is downregulated in acute myeloid leukemia.

The transcription factor CCAAT enhancer binding protein α (C/EBPα) is a master regulator in granulopoiesis and is frequently disrupted in acute myeloid leukemia (AML). We have previously shown that C/EBPα exerts its effects by regulating microRNAs (miRs) such as miR-223 and miR-34a. Here, we confirm miR-30c as a novel important target of C/EBPα during granulopoiesis. Thus, wild-type C/EBPα-p42 ...

متن کامل

C/EBPα regulated microRNA-34a targets E2F3 during granulopoiesis and is down-regulated in AML with CEBPA mutations.

The transcription factor, CCAAT enhancer binding protein alpha (C/EBPα), is crucial for granulopoiesis and is deregulated by various mechanisms in acute myeloid leukemia (AML). Mutations in the CEBPA gene are reported in 10% of human patients with AML. Even though the C/EBPα mutants are known to display distinct biologic function during leukemogenesis, the molecular basis for this subtype of AM...

متن کامل

Cell-cycle regulator E2F1 and microRNA-223 comprise an autoregulatory negative feedback loop in acute myeloid leukemia.

Transcription factor CCAAT enhancer binding protein alpha (C/EBPalpha) is essential for granulopoiesis and its function is deregulated in leukemia. Inhibition of E2F1, the master regulator of cell-cycle progression, by C/EBPalpha is pivotal for granulopoiesis. Recent studies show microRNA-223 (miR-223), a transcriptional target of C/EBPalpha, as a critical player during granulopoiesis. In this ...

متن کامل

An Evolutionarily Conserved Mechanism for MicroRNA-223 Expression Revealed by MicroRNA Gene Profiling

Many microRNAs (miRNAs) are evolutionarily conserved and have intriguing expression patterns. Tissue and/or time-specific expressions of some miRNAs are presumably controlled by unique cis-acting regulatory elements that coevolved with the miRNA sequences. Exploiting bioinformatics, we identified several miRNAs whose primary transcripts could be regulated by conserved genomic elements proximal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 123  شماره 

صفحات  -

تاریخ انتشار 2005